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• Work Package 1: Small-scale, analysis of 
controlled recordings produced by 
phoneticians. Systematic variation in vocal 
conditions (e.g. voice quality, accent 
guises)

• Work Package 2: Large-scale analysis of 
speakers from UK Government databases, 
involving 1000s of speakers. Identifying 
‘problematic’ speakers and correlating 
performance with linguistic and 
demographic factors

• Work Package 3: What do we do about 
this? Developing solutions to issues raised 
in WPs1-2, via e.g. data augmentation, 
fusion with other features
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1. Background: the ASR Pipeline
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Calibration



2. Motivations

ASR systems:
• Optimized to make accurate predictions for given data, on average.

• Performance may vary across speakers or trials.
• Model combined variations in speaker, channel, content, duration, and 

other factors.
• Challenges with unseen microphones, environments, speaking styles etc.

• May yield decisions hard to interpret. 

Forensic voice comparison is a high-stakes application: Explainable 
decisions are essential.
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2. Research Questions

• Are there systematic patterns in ASR output depending on acoustic 
properties of speakers?

• How can scores be explained by differences in acoustic measures of 
compared speech?
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3. Method Overview
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3. Speech Data
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Dataset
• 155 male anglo speakers 

• UK Government database     
(one recording per speaker)

• Mobile phone conversations 
(8kHz, single channel)

• London accent

• 3 age groups: 18-34 (65), 35-49 
(59), over 50 (31)

Advantages:

• Forensically realistic input (all 
spontaneous speech)

• Limited variability in technical 
conditions (all mobile phone)

• Limited variability in accents 
(all London accent)



3. Speech Data
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Calibration dataset

• 20 male speakers 

• GBR-ENG corpus                    
(two recordings per speaker)

• Mobile phone conversations 
(8kHz, single channel)

• Both parents born in London

• Ages: 18-43

Dataset
• 155 male anglo speakers 

• UK Government database     
(one recording per speaker)

• Mobile phone conversations 
(8kHz, single channel)

• London accent

• 3 age groups: 18-34 (65), 35-49 
(59), over 50 (31)



3. Acoustic Measurements
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f0, loudnessGlottal and energy measures

F1, F2, F3, 
B1, B2, B3

Vocal tract related measures

HNR, Jitter, Shimmer

Length of continuously 
voiced regions

Voice Quality measures

Temporal features Acoustic distances
• Formants, bandwidths and f0 (all 

sonorant segments): Praat

• Others: OpenSMILE

• Two summary statistics (mean and 
SD) of these features

• Standardisation of means and SDs 
(z-score)

• Distance computation: absolute 
difference between standardised 
means and SDs



3. F0 and Formants

• Praat algorithm, 
implemented in Python

• Made use of forced 
alignment information 
(Montreal Forced Aligner)

• f0: 40-300 Hz

• Visual inspection: Long-term 
formants (F1, F2, F3) 
distribution plot for each 
speaker
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3. Regression Model

Response Variable:
● The higher the 

LLR, the more 
confident the ASR 
system is that the 
speaker identities 
agree

Predictors/Fixed Effects:
● Absolute difference of 

standardised means and 
SDs of 12 acoustic 
features

● The lower the distances, 
the more acoustically 
similar the two utterances 
are

Random Effects:
● Per-speaker random 

intercept as a variable with 
zero mean and unknown 
variance.

● Explicitly model the group 
structure: the same speaker 
appears multiple times
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4. Overview: Mean DS LLRs of London Speakers
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• Bayesian calibration with Jeffreys 
non-informative priors

• DS Cllr: 0.0152 

• 0.15% of the pairs (18/11935) had a 
positive calibrated score (i.e. 
contrary-to-fact support to a same-
speaker decision)

• Suspicious pairs / voice twins:  

-6

-10

-8



4. Formant Frequencies Mismatches
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LLR =  −18.93 LLR = 8.36



4. Mixed Effect Model as a whole
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How good is the mixed effect model at 
explaining the variation in LLR score?

• Pearson Correlation between 
between the model fitted values 
and the LLR scores: r = 0.63 

• Marginal R2 = 0.243 / Conditional 
R2 = 0.472

→ The presence of unmodelled effects



4. Effects of Acoustic Mismatches
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Statistically significant fixed effects:

• Long-term average difference: F3, F0, F2, 
F1, B1, Shimmer, length of continuously 
voiced regions, HNR, Jitter

• Long-term SD difference: F3, F1, F2, 
Shimmer, HNR, B1, Loudness, F0, Jitter

• Most coefficients are negative: the larger 
the acoustic distance, the lower the 
calibrated DS LLRs.

F0 and 
Formants
(mean)

F0 and 
Formants
(SD)



4. Effects of Acoustic Mismatches
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• Negative: a larger mean F0 / F3 difference 
predicts a lower calibrated DS LLR.

• Changing standardised mean F0 5 units predicts 
the LLR score to go down by 3.5 units.

F0 Mean 
Difference

F3 Mean 
Difference



Take-home Message
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Inter-speaker acoustic mismatches are negatively correlated with ASR scores.

• F0 and formant frequencies-related mismatches (both mean and SD) 
have the greatest explanatory power in LLR scores.

• The average F3 difference is individually the most important feature: 
usually most sensitive to the tip of the tongue and lip rounding.

• First formant bandwidth (B1), Jitter, and Shimmer-related mismatches 
(both mean and SD) also contribute to explain the LLR scores.

→ Ultimately help towards enhancing explainability to ASR system



Questions and Comments
{chenzi.xu | paul.foulkes | philip.harrison |

vincent.hughes | poppy.welch | jessica.wormald}@york.ac.uk

@ChenziAmy chenzixu.rbind.io



Automatic Forced Alignment
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Acoustic models

Pronunciation 
dictionary

Acoustic vectors

Words Phonemes

that ð æ ʔ

they ð ej

interview ɪ n t ə vʲ ʉː

Transcript

…and they they they I got an 
interview for that…

Evaluation: 
Likelihood score

Audio recording



Data Cleaning Workflow
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Sanity Check

✔ Unique identifier (duplicates)
✔ Total file number by corpus
✔ Any missing audios
✔ Any missing transcripts
✔ Any exceptionally short
     audios
✔ Any problematic timestamps
     in the transcripts

sanche.py

Metadata 
Management

✔ Gather various
     spreadsheets
✔ Use consistent formats
✔ Encode questionnaire
✔ Aggregate the metadata
     of all corpora

metadata.ipynb

Automatic Forced 
Alignment

✔ Organise working directory
✔ Set up Montreal Forced
     Aligner (MFA)
✔ Generate input Textgrids
     from transcripts
✔ Trace Out-of-Vocabulary
     items (OOVs) and fix typos
✔ Update pronunciation
     dictionary
✔ MFA alignments with
     multiple sets of parameters
✔ Evaluation of outputs

mfa_align.job

File Renaming and 
Organisation

✔ Generate new filenames
     using metadata
✔ Format: corpus code,
    participant number,
    session, repetition,
    speaking condition, and
    microphone type,
    separated by “_”

rename.py

pasr-forced-alignment
pasr-ho-documentation



Mean DS Scores (Vowels-only)
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• Bayesian calibration with Jeffreys 
non-informative priors

• DS Cllr: 0.3301 

• 10% of the pairs (1178/11925) had a 
positive calibrated score 
  (i.e. contrary-to-fact 
support to a same-speaker decision) 


