Impact of mismatches in long-term acoustic features on different-speaker ASR scores

Chenzi Xu, Paul Foulkes, Philip Harrison, Vincent Hughes, Poppy Welch, Jessica Wormald, Finnian Kelly and David van der Vloed

IAFPA 2023

Netherlands Forensic Institute Ministry of Justice and Security

Person-specific ASR: understanding the behaviour of individuals for applications of ASR ESRC: 2022-25

Netherlands Forensic Institute Ministry of Justice and Security

- Work Package 1: Small-scale, analysis of controlled recordings produced by phoneticians. Systematic variation in vocal conditions (e.g. voice quality, accent guises)
- Work Package 2: Large-scale analysis of speakers from UK Government databases, involving 1000s of speakers. Identifying 'problematic' speakers and correlating performance with linguistic and demographic factors
- Work Package 3: What do we do about this? Developing solutions to issues raised in WPs1-2, via e.g. data augmentation, fusion with other features

Outline

- 1. Background: the ASR pipeline
- 2. Motivations and Research Questions
- 3. Method
 - **a.** Speech data: A subset of UK Government database
 - **b.** Acoustic measurements
 - C. Regression model
- 4. Analysis
 - **a.** Mean DS scores for all speakers
 - **b**. Effects of acoustic mismatches

1. Background: the ASR Pipeline

© OxfordWaveResearch

2. Motivations

ASR systems:

- Optimized to make accurate predictions for given data, on average.
 - Performance may **vary** across speakers or trials.
- Model **combined variations** in speaker, channel, content, duration, and other factors.
 - Challenges with **unseen** microphones, environments, speaking styles etc.
- May yield decisions hard to interpret.

Forensic voice comparison is a high-stakes application: **Explainable decisions** are essential.

2. Research Questions

• Are there **systematic patterns** in ASR output depending on **acoustic** properties of speakers?

• How can scores be **explained** by differences in acoustic measures of compared speech?

3. Method Overview

3. Speech Data

Dataset

- **155 male** anglo speakers
- UK Government database (one recording per speaker)
- Mobile phone conversations (8kHz, single channel)
- London accent
- 3 age groups: 18-34 (65), 35-49 (59), over 50 (31)

Advantages:

- Forensically realistic input (all spontaneous speech)
- Limited variability in technical conditions (all **mobile phone**)
- Limited variability in accents (all London accent)

3. Speech Data

Dataset

- 155 male anglo speakers
- UK Government database (one recording per speaker)
- Mobile phone conversations (8kHz, single channel)
- London accent
- 3 age groups: 18-34 (65), 35-49 (59), over 50 (31)

Calibration dataset

- 20 male speakers
- GBR-ENG corpus (two recordings per speaker)
- Mobile phone conversations (8kHz, single channel)
- Both parents born in **London**
- Ages: 18-43

3. Acoustic Measurements

Acoustic distances

- Formants, bandwidths and f0 (all sonorant segments): Praat
- Others: **OpenSMILE**
- Two summary statistics (mean and SD) of these features
- **Standardisation** of means and SDs (z-score)
- Distance computation: absolute difference between standardised means and SDs

3. F0 and Formants

- Praat algorithm, implemented in Python
- Made use of forced alignment information (Montreal Forced Aligner)
- f0: 40-300 Hz
- Visual inspection: Long-term formants (F1, F2, F3) distribution plot for each speaker

3. Regression Model

Linear Mixed Effects Model (in lme4 syntax)

Calibrated DS LLRs ~ Acoustic Distances + (1|speaker1) + (1|speaker2)

Response Variable:

 The higher the LLR, the more confident the ASR system is that the speaker identities agree

Predictors/Fixed Effects:

- Absolute difference of standardised means and SDs of 12 acoustic features
- The lower the distances, the more acoustically similar the two utterances are

Random Effects:

- Per-speaker random intercept as a variable with zero mean and unknown variance.
- Explicitly model the group structure: the same speaker appears multiple times

4. Overview: Mean DS LLRs of London Speakers

- Bayesian calibration with Jeffreys non-informative priors
- DS C_{///}: 0.0152
- 0.15% of the pairs (18/11935) had a positive calibrated score (i.e. contrary-to-fact support to a same-speaker decision)
- Suspicious pairs / voice twins:

E D

4. Formant Frequencies Mismatches

LLR = -18.93

LLR = 8.36

4. Mixed Effect Model as a whole

How good is the mixed effect model at explaining the variation in LLR score?

- Pearson Correlation between between the model fitted values and the LLR scores: *r* = 0.63
- Marginal $R^2 = 0.243$ / Conditional $R^2 = 0.472$
- \rightarrow The presence of unmodelled effects

4. Effects of Acoustic Mismatches

Statistically significant fixed effects:

- Long-term average difference: F3, F0, F2, F1, B1, Shimmer, length of continuously voiced regions, HNR, Jitter
- Long-term SD difference: **F3, F1, F2**, Shimmer, HNR, B1, Loudness, **F0**, Jitter
- Most coefficients are **negative**: the larger the acoustic distance, the lower the calibrated DS LLRs.

F0 and Formants (mean)

F0 and Formants (SD)

4. Effects of Acoustic Mismatches

- **Negative**: a larger mean F0 / F3 difference predicts a lower calibrated DS LLR.
- Changing standardised mean F0 5 units predicts the LLR score to go down by 3.5 units.

Take-home Message

Inter-speaker acoustic mismatches are negatively correlated with ASR scores.

- F0 and formant frequencies-related mismatches (both mean and SD) have the greatest explanatory power in LLR scores.
- The **average F3 difference** is individually the most important feature: usually most sensitive to the tip of the tongue and lip rounding.
- First formant bandwidth (B1), Jitter, and Shimmer-related mismatches (both mean and SD) also contribute to explain the LLR scores.

→ Ultimately help towards enhancing explainability to ASR system

Questions and Comments

{chenzi.xu | paul.foulkes | philip.harrison |

vincent.hughes | poppy.welch | jessica.wormald}@york.ac.uk

chenzixu.rbind.io

Netherlands Forensic Institute Ministry of Justice and Security

Automatic Forced Alignment

Data Cleaning Workflow

Sanity Check	Metadata Management	Automatic Forced Alignment	File Renaming and Organisation
 ✓ Unique identifier (duplicates) ✓ Total file number by corpus ✓ Any missing audios ✓ Any missing transcripts ✓ Any exceptionally short audios ✓ Any problematic timestamps in the transcripts 	 ✓ Gather various spreadsheets ✓ Use consistent formats ✓ Encode questionnaire ✓ Aggregate the metadata of all corpora Metadata.ipynb 	 Organise working directory Set up Montreal Forced Aligner (MFA) Generate input Textgrids from transcripts Trace Out-of-Vocabulary items (OOVs) and fix typos Update pronunciation dictionary 	 Generate new filenames using metadata Format: corpus code, participant number, session, repetition, speaking condition, and microphone type, separated by "_"
sanche.py		 MFA alignments with multiple sets of parameters Evaluation of outputs 	rename.py

mfa_align.job

Mean DS Scores (Vowels-only)

- Bayesian calibration with Jeffreys non-informative priors
- DS C_{///}: 0.3301
- 10% of the pairs (1178/11925) had a positive calibrated score

 (i.e. contrary-to-fact support to a same-speaker decision)

