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1. Background: the ASR Pipeline
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2. Motivations

ASR systems:
* Optimized to make accurate predictions for given data, on average.
* Performance may vary across speakers or trials.

* Model combined variations in speaker, channel, content, duration, and
other factors.

* Challenges with unseen microphones, environments, speaking styles etc.
* May yield decisions hard to interpret.

Forensic voice comparison is a high-stakes application: Explainable
decisions are essential.



2. Research Questions

* Are there systematic patterns in ASR output depending on acoustic
properties of speakers?

* How can scores be explained by differences in acoustic measures of
compared speech?



3. Method Overview
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3. Speech Data

Dataset

155 male anglo speakers

UK Government database
(one recording per speaker)

Mobile phone conversations
(8kHz, single channel)

London accent

3 age groups: 18-34 (65), 35-49
(59), over 50 (31)

Advantages:

Forensically realistic input (all
spontaneous speech)

Limited variability in technical
conditions (all mobile phone)

Limited variability in accents
(all London accent)



3. Speech Data

Dataset

155 male anglo speakers

UK Government database
(one recording per speaker)

Mobile phone conversations
(8kHz, single channel)

London accent

3 age groups: 18-34 (65), 35-49
(59), over 50 (31)

20 male speakers

GBR-ENG corpus
(two recordings per speaker)

Mobile phone conversations
(8kHz, single channel)

Both parents born in London

Ages: 18-43



3. Acoustic Mea

surements

Temporal features

Length of continuously =)

voiced regions

Voice Quality measures

HNR, Jitter, Shimmer =)

Vocal tract related measures

Glottal and energy measures

F1, F2, F3,
B1, B2, B3 =
f0, loudness g

o

et

Acoustic distances

* Formants, bandwidths and fO (all
sonorant segments): Praat

* Others: OpenSMILE

* Two summary statistics (mean and
SD) of these features

e Standardisation of means and SDs
(z-score)

* Distance computation: absolute
difference between standardised
means and SDs

10



3. FO and Formants

Praat algorithm,
implemented in Python

Made use of forced
alignment information
Montreal Forced Aligner)

f0: 40-300 Hz

Visual inspection: Long-term
formants (F1, F2, F3
distribution plot for each
speaker
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3. Regression Model

Linear Mixed Effects Model (in Ime4 syntax)

Calibrated DS LLRs ~ Acoustic Distances + (1|speakerl) + (1|speaker2)

\ J \ J
Y Y
Response Variable: Predictors/Fixed Effects: Random Effects:
e The higher the e Absolute difference of e Per-speaker random
LLR, the more standardised means and intercept as a variable with
confident the ASR SDs of 12 acoustic zero mean and unknown
system is that the features variance.
speaker identities e The lower the distances, e EXplicitly model the group
agree the more acoustically structure: the same speaker
similar the two utterances appears multiple times
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4. Overview: Mean DS LLRs of London Speakers

* Bayesian calibration with Jeffreys
non-informative priors

e DSC,: 0.0152

* 0.15% of the pairs (18/11935) had a
positive calibrated score (i.e.
contrary-to-fact support to a same-
speaker decision)

* Suspicious pairs / voice twins:

O 0
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F1

4. Formant Frequencies Mismatches

LLR= -18.93 LLR = 8.36
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4. Mixed Effect Model as a whole

R=0.63, p<2.2e-16 )

How good is the mixed effect model at
explaining the variation in LLR score?

I
1

* Pearson Correlation between
between the model fitted values
and the LLR scores: r=0.63

* Marginal R? = 0.243 / Conditional
R2=0.472

Predicted Score (Fitted Model)
o %

— The presence of unmodelled effects

20 10 0
Calibrated DS LLR Score
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4. Effects of Acoustic Mismatches
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Predicted Calibrated DS Score

4. Effects of Acoustic Mismatches
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. . a larger mean FO / F3 difference
predicts a lower calibrated DS LLR.

* Changing standardised mean FO 5 units predicts
the LLR score to go down by 3.5 units.
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Take-home Message

Inter-speaker acoustic mismatches are negatively correlated with ASR scores.

* FO0 and formant frequencies-related mismatches (both mean and SD)
have the greatest explanatory power in LLR scores.

 The average F3 difference is individually the most important feature:
usually most sensitive to the tip of the tongue and lip rounding.

« First formant bandwidth (B1), Jitter, and Shimmer-related mismatches
(both mean and SD) also contribute to explain the LLR scores.

— Ultimately help towards enhancing explainability to ASR system
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Questions and Comments

@ {chenzi.xu | paul.foulkes | philip.harrison |

vincent.hughes | poppy.welch | jessica.wormald}@york.ac.uk

W @chenziamy chenzixu.rbind.io
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Automatic Forced Alighment
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Data Cleaning Workflow

Metadata

Sanity Check Management

v Unique identifier (duplicates) v Gather various

V Total file number by corpus spreadsheets
V' Any missing audios V Use consistent formats
V' Any missing transcripts v Encode questionnaire
V' Any exceptionally short V' Aggregate the metadata
audios of all corpora
V' Any problematic timestamps
in the transcripts metadata.ipynb
sanche.py

pasr-forced-alignment
pasr-ho-documentation

Automatic Forced
Alignment

v Organise working directory

v Set up Montreal Forced
Aligner (MFA)

V Generate input Textgrids
from transcripts

V Trace Out-of-Vocabulary
items (O0Vs) and fix typos

v/ Update pronunciation
dictionary

v/ MFA alignments with
multiple sets of parameters

V Evaluation of outputs

mfa_align.job

File Renaming and
Organisation

V Generate new filenames
using metadata

v/ Format: corpus code,
participant number,
session, repetition,
speaking condition, and
microphone type,
separated by “_"

rename.py
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Mean DS Scores (Vowels-only)

* Bayesian calibration with Jeffreys
non-informative priors

e DSC, 0.3301

* 10% of the pairs (1178/11925) had a
positive calibrated score

(i.e. contrary-to-fact
support to a same-speaker decision)
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